

#### GHG Regulation Impact Analysis – Initial Study Results

September 17, 2014

H

#### The purpose of MISO's analysis...

... is to inform stakeholders of potential impacts on the generation fleet and load resulting from the EPA's proposal to reduce  $CO_2$  emissions from existing electric generating units.





### Study objectives and key takeaways

| Study<br>Phase | Objectives                                                                                                                                                                                                                                                                                                                                 | Study results indicate that                                                                                                                                                                                                                                                |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Phase 1        | <ul> <li>Calculation of the compliance costs for regional (MISO footprint) and sub-regional (Local Resource Zones) CO<sub>2</sub> management</li> <li>Applying the Building Blocks as proposed in the EPA's draft rule</li> <li>Applying a regional CO<sub>2</sub> constraint, i.e., a regional CO<sub>2</sub> reduction target</li> </ul> | Alternative compliance<br>options outside the<br>building blocks could<br>achieve the proposed level<br>of CO <sub>2</sub> reduction at a lower<br>cost.<br>Regional compliance<br>options save<br>approximately \$3B<br>annually compared to sub-<br>regional compliance. |
| Phase 2        | Examination of the range of CO <sub>2</sub><br>emissions reductions, and associated<br>costs, under various future policy and<br>economic assumptions                                                                                                                                                                                      | Up to an additional 14GW of coal capacity could be at-risk for retirement.                                                                                                                                                                                                 |



### Each state has a proposed state-wide CO<sub>2</sub> emissions rate goal calculated as:

Statewide CO<sub>2</sub> emissions from covered fossil fuel-fired power plants (lbs)

State electricity generation from covered fossil plants + renewable energy + nuclear (at-risk portion and New) + energy efficiency (EE) (MWh)

- Numerator sum of CO<sub>2</sub> emissions from existing generating units
- Denominator electricity generation in the state excludes existing hydro and new thermal resources
- Every state is assigned a different proposed rate goal (lbs/MWh) for the interim (2020-2029) and the final (2030 onward) periods
- For modeling purposes, rate-to-MISO-equivalent mass was calculated:
  - Emissions in tons = (qualifying 2012 system generation + renewable and EE mandate-driven energy forecast) \* (proposed CO<sub>2</sub> emission rate goal for a state)
  - Only the MISO portion of the state was modeled



Rate

(lbs/MWh)

### EGEAS was used to study potential impacts of the draft CO<sub>2</sub> emissions reduction rule



Total System Costs = Sum of Production Cost + Fixed O&M Cost + Capital Carrying Costs.



#### Phase 1 : An assessment of EPA's Building Blocks



#### **Reference case & Phase 1 scenarios**

| Scenario                   | EPA Assumptions and Methodology                                                                                                | Cost per ton of<br>CO <sub>2</sub> reduction<br>(\$/ton) *                       |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| Reference Case             | MISO's MTEP-15 Business As Usual future assumptions**                                                                          | -                                                                                |
| Building Block 1           | In 2020, apply a 6% heat rate improvement to all the coal-fired units at a capital cost of \$100/kW (amortized over 10 years). | 5                                                                                |
| Building Block 2           | Calculate and enforce, starting in 2020, a minimum fuel burn for existing CC units to yield an annual 70% capacity factor.     | 53                                                                               |
| Building Block 3           | Calculate and add the equivalent amount of wind MWs to meet the incremental regional non-hydro renewable target.               | 237<br>Present value calculation for costs is<br>the driver for the higher cost. |
| Building Block 4           | Calculate the amount of energy savings for the MISO footprint and incorporate it as a 20-year EE program in the model.         | 70                                                                               |
| All Building Blocks        | Application of all building blocks.                                                                                            | 60                                                                               |
| CO <sub>2</sub> Constraint | Application of a mass-based $CO_2$ reduction target, allowing the model to optimize.                                           | 38                                                                               |

\* The cost per ton of CO<sub>2</sub> reduction is indicative – actual values may vary depending on different input assumptions, etc.

\*\* Assumptions matrix is available at https://www.misoenergy.org/Events/Pages/PAC20140820.aspx



### 2030 MISO system energy generation forecast under Phase 1 scenarios



### MISO system CO<sub>2</sub> emissions forecast under Phase 1 scenarios



### Thinking outside the blocks

- The model can select a least-cost solution that meets a user-defined CO<sub>2</sub> target by considering various alternatives.
  - For example, adding new Combined Cycle generation to meet demand and energy needs could be a least-cost solution as its emissions are not included in the proposed EPA's emissions rate calculation
- Using the model's functionality:
  - Set equivalent mass reduction targets as a CO<sub>2</sub> constraint for regional and sub-regional cases
  - Compare the total cost of the regional vs. sub-regional cases
  - Compliance cost is defined as the difference in the net present value of total system costs between the scenario and the reference cases



### Regional compliance options save approximately \$3B annually compared to sub-regional compliance



### Phase 2: All possible combinations of the following policy and economic sensitivities were modeled





## Lower cost compliance strategies to implement the proposed CO<sub>2</sub> rule put an additional 14GW of coal capacity at-risk for retirement



### **Study findings**

- The Phase 1 results indicate that:
  - Alternative compliance options could achieve the proposed level of CO<sub>2</sub> reduction at a lower cost relative to the application of all the EPA building blocks
  - Regional compliance options save approximately \$3B annually compared to sub-regional compliance
- The Phase 2 results indicate that up to an additional 14GW of coal capacity could be at-risk for retirement



#### Next Steps...

- MISO can provide additional details behind the modeling, including sub-regional data, based on stakeholder interest
- MISO will develop the scope of work for the next round of analyses based on stakeholder feedback
  - Thank you for the feedback already submitted
  - Please provide any additional feedback to Aditya Jayam
     Prabhakar (<u>ajayamprabhakar@misoenergy.org</u>)



#### **Additional questions? Please contact:**

- Aditya Jayam Prabhakar
  - ajayamprabhakar@misoenergy.org





### Appendix

# Promulgated under the authority of Section 111(d) of the Clean Air Act, the EPA's $CO_2$ emissions rule for existing power plants:

- Proposes state-specific emission rate-based CO<sub>2</sub> goals with various options for flexibility in compliance.
- Offers guidelines for the development, submission and implementation of state plans to address greenhouse gas (GHG) emissions from existing fossil-fired electric generating units (EGUs).
- Reflects the emissions reductions that can be achieved by the application of the Best System of Emission Reduction (BSER) ... adequately demonstrated.



#### The EPA's definition of BSER is based on four "building blocks" of emissions reduction

| Building Blocks                                                                                                             |                                                                        |                                                                                                                                                                                     |                                                                 |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|--|--|--|
| 1. Improve<br>efficiency of<br>existing coal<br>plants                                                                      | 2. Increase<br>reliance upon<br>CC gas units                           | 3. Expand use of<br>renewable resources<br>and sustain nuclear<br>power production                                                                                                  | 4. Expand use of demand-side energy efficiency                  |  |  |  |
| EPA Calculations/Assumptions in the Proposed State Goal Development                                                         |                                                                        |                                                                                                                                                                                     |                                                                 |  |  |  |
| 6% efficiency<br>(heat rate)<br>improvement<br>across the<br>fleet, assuming<br>best practices<br>and equipment<br>upgrades | Re-dispatch<br>of CC gas<br>units up to a<br>capacity<br>factor of 70% | Meet regional non-hydro<br>renewable target,<br>prevent the retirement<br>of at-risk nuclear<br>capacity and promote<br>the completion of<br>nuclear capacity under<br>construction | Scale to achieve<br>1.5% of prior year's<br>annual savings rate |  |  |  |



### Application of the EPA's Building Blocks to each MISO state's power generation resource mix



# The regulation allows flexibility in developing state compliance plans, and offers possible compliance options:

- Co-firing or switching to natural gas
- Carbon capture and sequestration
- New natural gas combined cycle generation capacity
- Heat rate improvements for oil, gas-fired, CC and combustion turbine (CT) units
- Co-firing lower carbon fuels
- Transmission efficiency improvements
- Energy storage technology
- Retirements
- Market-based trading programs

