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Abstract 
One concern with offshore wind energy development is a negative impact to tourism. In this 
paper we assess this concern by examining how the Block Island Wind Farm, the first of its kind 
in the United States, has impacted the vacation rental market. Using data from AirBnb, we 
estimate a difference-in-differences model that compares Block Island to three nearby tourist 
destinations in Southern New England before and after construction. Our results suggest that 
construction of the Block Island Wind Farm caused a significant increase in nightly reservations, 
occupancy rates, and monthly revenues for AirBnb properties in Block Island during the peak-
tourism months of July and August, but had no effect in other months. The findings indicate that 
offshore wind farms can act as an attractive feature of a location, rather than a deterrent.  
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1  Introduction 

Although U.S. offshore wind currently accounts for only 0.03% of the 96.5 gigawatts of 

installed wind capacity in the country (American Wind Energy Association 2018), future growth 

in wind generation will likely be more concentrated offshore. The political climate is evolving 

with federal policies that encourage wind power development and with aggressive, state-level 

renewable energy objectives to source wind power offshore.1 The industry itself reached an 

important milestone on December 12, 2016 when America’s first and to date only offshore wind 

farm (OSWF), the five turbine, 30 megawatt (MW) Block Island Wind Farm (BIWF), began 

generating electricity. Partially due to the success of BIWF, Massachusetts, Rhode Island, and 

Connecticut recently awarded contracts for 800, 400, and 200 MW OSWFs that are expected to 

be operational by 2021, 2023, and 2023, respectively, assuming permits are granted. Other 

OSWF projects along the U.S. east coast are also forthcoming, including New York’s recently 

approved 90-MW South Fork Wind Farm that could be operational in 2022 and Maryland’s 120-

MW OSWF project, Skipjack Wind, whose offshore construction will likely begin in 2021 with 

generation set for 2022.  

Despite the progress, there are several impediments to widespread growth of U.S. 

offshore wind energy. The high levelized cost of producing offshore wind energy makes it 

difficult to compete with other energy sources without subsidies.2 At the federal level, the 

absence of federally mandated offshore wind energy goals, the short-term and inconsistent nature 

of production tax credits, and the imposition of lease and royalty fee payments can discourage 

development (Portman et al. 2009). At the local level, community members and other 

stakeholder groups have fervently opposed proposed offshore wind energy facilities, as 

exemplified by failed development plans of Cape Wind off the coast of Massachusetts. OSWFs 

have been opposed for several reasons, ranging from the impacts to marine fauna, the loss of 

recreational and commercial fishing grounds, the environmental and human safety risks of ship-

                                                 
1 Massachusetts requires state electricity providers to procure 1,600 MW of offshore wind capacity by 2027 
(Massachusetts 2016); New York has committed to develop up to 2,400 MW of offshore wind power by 2030 
(NYSERDA 2016); Maryland recently awarded two offshore wind projects the right to receive Offshore Wind 
Renewable Energy Credits as part of the state’s Offshore Wind Energy Act of 2013 (Maryland 2013); New Jersey’s 
governor signed an Executive Order on January 31, 2018 to promote the development of 3,500 MWs of offshore 
wind energy generation by 2030 (Murphy 2018). 
2 Estimates suggest that the levelized cost of offshore wind is among the highest of all sources of energy production 
(U.S. Energy Information Administration 2018a). 
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turbine collisions, and the effects on nearby property values.3 Snyder and Kaiser (2009) discuss 

several of the ecological and socioeconomic arguments used in favor of and against offshore 

wind power.  

In coastal communities, one of the most commonly voiced concerns is that OSWF 

development will deter tourists. Rudolph (2014) examines how stakeholders rationalized this 

apprehension during the planning phase of two OSWFs in Germany and Scotland. Opponents 

invoked several lines of reasoning for why the two OSWFs might detract for the area’s 

desirability and therefore hurt the tourism industry, including that the wind farms would visually 

disturb the seascape, erode the area’s cultural character and identity, or interfere with 

recreational activities like boating and fishing. Except for the latter, these concerns seem valid in 

the context of American OSWF development based on suggestive findings from a few recent 

studies (Parsons and Firestone 2018; Firestone et al. 2018; ten Brink and Dalton 2018). 

However, there exists no empirical evidence to substantiate the overall claim that OSWFs 

negatively affect tourism. Filling this research gap is critical because local conflicts about the 

impact of OSWFs on tourism can have important implications for where, and how far offshore, 

proposed offshore wind power facilities are located.  

The purpose of this paper is to assess the effect of offshore wind development on tourism 

by examining the effect of the BIWF on the vacation rental market. The BIWF stands within 

Rhode Island state waters, approximately three miles off the coast of Block Island, and is visible 

from any location on Block Island that has a direct view, as well as from ferry rides to and from 

the mainland. We use data from AirBnb over the period October 2014 to December 2017, which 

spans before and after construction of the BIWF. Our method is rooted in a hedonic valuation 

framework, and we estimate a difference-in-differences (DD) model using three nearby tourist 

destinations as controls. Our specification includes property fixed effects to mitigate omitted 

variable bias, as well as temporal variables that control for seasonality and trends in the vacation 

rental market. Using this modelling approach, we focus purely on understanding visitor 

preferences for the BIWF and leave evaluating impacts to permanent residents for future work. 

                                                 
3 The extent to which these claims materialize depend on site-specific factors, hence growing with the industry is a 
body of case studies investigating the ecological (Bergström et al. 2014; Lindeboom et al. 2011) and socioeconomic 
(Jensen et al. 2018) impacts of OSWF installations. In some sense, however, whether there is basis in the academic 
literature for these claims is irrelevant; valid or not, these claims can impede OSWF development.     
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The model yields an island-wide treatment effect, which is most relevant for assessing 

tourism impacts in this context for two reasons. First, there are several impacts of the BIWF’s 

presence, like the creation of new recreational fishing opportunities or the symbolization of 

progress toward clean energy, that are unrelated to visibility but might nonetheless stimulate 

overnight visits to the island. Second, the small geographical size of Block Island—about 10 

square miles—allows for easy access to the best views of the turbines from any location on the 

island; hence, overnight visitors need not rent properties that are in direct viewshed to experience 

the wind farm.4 Moreover, it is likely that few Block Island AirBnb properties in our sample are 

in direct viewshed of the wind farm.  

Block Island offers an excellent setting for examining visitor preferences for the BIWF 

because the tourism industry is the backbone of the local economy. While home to about 1,000 

permanent residents, Block Island can host up to 20,000 visitors per day during peak summer 

season (New Shoreham Planning Board 2016). Thus, by establishing a baseline and examining 

post-construction movements in the vacation rental market relative to other tourist destinations, 

we infer how tourists, in aggregate, respond to the wind farm.5 If the overall tourist experience 

changes because of the BIWF, then the vacation rental market will change accordingly.  

There are two noteworthy features of this analysis. First, our study evaluates multiple 

margins of adjustment, which contrasts with many previous hedonic studies applied to the 

vacation rental market that evaluate only price adjustments.6 We estimate our model using five 

different dependent variables: booked price, number of nights available, number of nights 

reserved, occupancy rate, and revenue. Because the speed at which vacation rental prices respond 

to environmental shocks is unknown,7 it is important to evaluate other margins of adjustment 

that may be more elastic. Furthermore, rental market adjustments may differ in the short-run (1 

                                                 
4 To put this in perspective, visitors can traverse almost the entire island on a 16-mile bike loop that stops at the 
BIWF and all 12 of its other major sites. 
5 Almost certainly, there are tourists that are attracted by and repulsed by the BIWF and everywhere in between. Our 
measures are aggregate, and we cannot distinguish preferences of individuals or even the proportion of tourists 
falling into different categories.  
6 Applications include hedonic pricing of: tourist activity and online reputation (Perles Ribes et al. 2018), rural 
recreation amenities (Nelson 2010), seascape amenities (J. M. Hamilton 2007), smoking prohibitions (Benjamin et 
al. 2001), access to coastal beaches (Taylor and Smith 2000), and land-uses in Spain (Bilbao-Terol et al. 2017), 
Belgium (Vanslembrouck et al. 2005) and France (LeGoffe 2000) 
7 To the best of our knowledge, no study has explored the dynamics of vacation rental property price responsiveness. 
While intuition may suggest that more transactions would lead to faster price changes, (Lang 2015) finds that 
amenity changes are capitalized more quickly for owner occupied housing than rental housing.  
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year) and the long-run (3-5 years). The price and availability of a rental property should be 

codetermined in the long-run. In the short-run, however, there may be a divergence in the various 

rental market metrics because landlords do not immediately respond to environmental shocks, 

but renters do. If this were the case, we would expect to see changes in the number of booked 

nights, occupancy rates, and revenues, but not in prices nor availability. 

Second, our study is the first to empirically test the effect of offshore wind farms on 

tourism within a revealed preference framework. Other studies, reviewed in Section 2, have 

evaluated preferences for OSWFs using stated preference approaches, but these data can be 

biased for many reasons, including recall error, motivated reasoning, or just outright lying. 

Especially in the case of renewable energy development, support for which can be tied to a 

person’s political ideology (Kennedy 2017), results may be biased as respondents seek to 

influence outcomes. Biases in this manner have been documented with stated preference 

measures in similarly politically contentious issues of gun control and climate change (Kahan et 

al. 2017; Goebbert et al. 2012; Howe and Leiserowitz 2013; Lang 2014). 

Our results suggest that construction of the BIWF led to significant increase in nightly 

reservations, occupancy rates, and monthly revenues for properties in Block Island during the 

peak-tourism months of July and August. Specifically, we estimate that, during each peak-

tourism month of July and August following construction, the BIWF caused a seven-night 

increase in reservations, a nineteen percentage point increase in occupancy rates, and a $3,490 

increase in revenue for AirBnb properties in Block Island relative to AirBnb properties in control 

cities. In other months, treatments effects are statistically insignificant, though results are often 

consistent with positive effects. We find no significant movements in nightly price, despite this 

being likely the easiest margin of adjustment. Overall, there is little within-property, temporal 

variation in prices, suggesting prices are “sticky”, and that landlords are experiencing changes to 

other margins of the vacation rental market. While specific to this context, these findings 

mitigate concerns about negative effects of OSFWs on local tourism.  

The paper proceeds as follows. In the next section, we review relevant literature. Section 

3 discusses the data and methodology. We provide results in Section 4 and we conclude in 

Section 5.  
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2  Literature review 

 Our research is grounded in hedonic price theory, which postulates that the overall price 

of a good is determined by the part-worth contribution from each observable attribute (Rosen 

1974). Hedonic analysis is among the most popular revealed preference approaches for 

evaluating preferences for non-market goods and environmental amenities. Applied to a context 

of residential housing prices, the hedonic pricing method (HPM) relates sale prices of housing 

transactions to a vector of property attributes that typically include intrinsic, locational, and 

environmental characteristics. Intrinsic characteristics are factors such as the size of the house, 

the size of the lot, the number of bathrooms, and the number of bedrooms. Locational 

characteristics can include the condition of nearby homes, the crime rate, and quality of schools. 

In the field of environmental economics, regressors of interest are one or more environmental 

characteristic that describes a non-market amenity, such as air quality, adjacent open space, and 

ocean views.  

HPM has been applied to estimate the implicit value of a wide range of amenities and 

disamenities related to energy extraction and production: power plants (Davis 2011), fracking 

(Muehlenbachs et al. 2015; Boslett et al. 2016), air quality (Chay and Greenstone 2005; Bento et 

al. 2015); and transmission lines (Hamilton and Schwann 1995). Several studies use hedonic 

methods to infer the external cost of onshore wind turbine facilities. Those that employ a quasi-

experimental identification strategy generally find insignificant or slightly negative property 

value impacts from turbine proximity (Dröes and Koster 2016; Hoen and Atkinson-Palombo 

2017; Hoen 2014) or turbine view (Gibbons 2015; Lang et al. 2014). However, two recent papers 

suggest larger housing price devaluations. Sunak and Madlener (2016) estimate a 9-14% 

decrease in values for properties “extremely” to “moderately” visually disturbed by wind 

turbines. Heintzelman et al. (2017) analyze upstate New York properties and find that the value 

of homes with a full or partial view of a turbine were reduced by about 17% following turbine 

construction. Jensen et al. (2018) is the only study to date that estimates property value impacts 

from offshore wind energy facilities within a hedonic valuation framework. Their results indicate 

that neither of two Danish OSWFs under study had any significant effect on the prices of 

primary or secondary homes.8 While the bulk of HPM onshore wind studies indicate zero to 

                                                 
8 The two offshore wind farms under study in Jensen et al. (2018) consist of 72 and 90 turbines and are located 
approximately six and two miles offshore, respectively. 
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negative price effect, this may not carry over to the vacation rental market because valuation may 

be a function of the time horizon spent around the turbines.9 For example, utility gains from 

seeing the turbines for the first time or over the course of a couple of days of vacation may 

outweigh the loss of unfettered ocean views, but for a permanent resident, 10 years of lost views 

may outweigh everything else and lead to net utility losses.  

Although HPM applications to offshore wind are limited, there is a substantial body of 

economic literature examining preferences for and tourism impacts of OSWFs. Most of these 

studies employ stated preference approaches, which use questionnaire responses to infer 

preferences and values. These approaches are appealing in the context of offshore wind 

development because observational data is limited or, as it was in the U.S. prior to the BIWF, 

non-existent. Yet the novelty of offshore wind development also raises concerns about the 

validity of evaluating its external cost using stated preference data. These data may be affected 

by the degree of respondent familiarity and experience with the good or amenity in question 

(Boyle et al. 1993; Cameron and Englin 1997), which is limited when it comes to OSWFs; nearly 

all the existing nonmarket valuation studies of OSWFs analyze stated preference data generated 

by individuals who lack any experience with this type of environmental amenity. Observational 

data, if representative of the population of interest, is not subject to this potential source of bias 

nor others, like sample selection bias, protest and strategic response bias, and hypothetical bias 

that may threaten valid inference. Moreover, it is generally argued that individuals’ behavior in 

the market can convey information about their core preferences for nonmarket goods and 

amenities. We therefore believe our revealed preference approach to illumining the 

socioeconomic impacts of OSWFs is a critical departure from the current body of literature. 

Nonetheless, it is important to review the existing economic literature that uses stated preference 

methods to infer such impacts. This stream of literature can be classified into two groups: the 

first estimates the implicit cost of visual disturbances from OSWFs and the second estimates the 

impact of these facilities on aggregate recreational visitation and beach use.  

With the exception of a few studies that find mixed preferences for OSWFs (Fooks et al. 

2017a; Westerberg et al. 2013), the first group of stated preference studies generally reveal 

OSWFs to be an environmental disamenity. These studies find that the visual disturbance from 

                                                 
9 More broadly, some amenities (e.g., local school quality) are expected to be reflected in the price of nearby 
housing but not in the price of nearby vacation rentals, and vice versa.  
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an OSWF located near the shore can generate considerable welfare losses for individuals, but 

these losses diminish as the distance of the OSWF from shore increases (Ladenburg and 

Dubgaard 2009, 2007; Krueger et al. 2011; Landry et al. 2012). Among this group, our study is 

perhaps most closely related to the work of Lutzeyer et al. (2018), who evaluate potential 

responses of the vacation rentals market to OSWF development. They survey recent renters of 

oceanfront and ocean-view vacation properties in North Carolina and assess their preferences for 

future rentals with different utility-scale wind farm configurations using a choice experiment.10 

For all visible turbine configurations, utility parameter estimates are negative and significant, 

which suggests that this population of renters, on average, strongly prefers unobstructed views of 

seascape. This result is broadly consistent with Fooks et al. (2017b), who, using an incentive 

compatible elicitation mechanism, find that tourists prefer hotel rooms without a view of an 

onshore wind turbine to those with a view of a turbine. Lutzeyer et al. (2018) also estimate utility 

parameters using a latent class model. These results reveal substantial heterogeneity in 

preferences across respondent groups, ranging from repulsion for all visible turbine 

configurations to indifference and even attraction to certain visible configurations, relative to the 

status-quo of no visible turbines. However, positive utility estimates from this model never 

translate to statistically significant willingness-to-pay values for moving OSWF turbines closer 

to shore.  

The second group of stated preference studies are less conclusive about the impact of 

OSWFs. Landry et al. (2012) estimate an aggregate demand model to assess the behavioral 

response of North Carolina residents to a widespread offshore wind energy development 

scenario: 100-turbine OSWFs located one mile off the coast of all major beach destinations in 

North Carolina. They find indistinguishable differences in the expected number of annual beach 

trips between the hypothetical windfarm scenario and the current, no-windfarm scenario. Most 

recently, Parsons and Firestone (2018) employ a contingent behavior web survey to evaluate 

beachgoer perceptions about offshore wind development and behavioral responses to OSWFs at 

beaches along the U.S. east coast. Consistent with the findings from other studies, theirs suggest 

that wind farms located close to the shore, within about 13 miles, will lead to reductions in beach 

trips and economic losses in form of foregone beachgoer welfare.  

                                                 
10 The most intrusive visible OSWF configuration has 144 turbines and is located five miles offshore; the least 
intrusive visible OSWF configuration has 64 turbines and is located 18 miles offshore.  
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One complication with accurately predicting the net impact of OSWFs on coastal 

recreational is the population of recreators may change. Parsons and Firestone (2018) estimate 

that, for an average beach, the first OSWF could generate nearly 13 million additional “curiosity 

trips” over the course of five to ten years from people who would not otherwise visit that beach. 

These estimates are not included in their main results, but the authors note that, if realized, an 

influx of curiosity trips of this magnitude would likely lead to net positive effects for many 

beaches. Other studies have also evidenced the potential for new OSWFs to attract tourists. In 

Lilley et al. (2010)’s intercept survey of Delaware beachgoers, 66% of out-of-state residents 

indicated being somewhat or very likely to visit a new or different beach at least once to see a 

200-turbine OSWF located approximately six miles from the beach. In Firestone et al. (2009)’s 

mail survey, 84% of Delaware residents expressed being somewhat or very likely to visit a new 

or different beach at least once to see a 500-turbine OSWF located six miles from the beach. 

It is difficult to draw conclusions about the projected impact of OSWFs on coastal 

recreation given the findings uncovered across the relevant stated preference literature. People 

prefer seascape horizons that are uncontaminated by wind turbines, but it remains unclear if and 

to what extent their behavior will change in response to OSWFs, as well as how many will be 

attracted to new OSWFs. Furthermore, many of the studies mentioned above capture preferences 

prior to OSWF installation, and preferences and support may change once OSWFs are installed. 

For example, Firestone et al. (2018) survey residents of Block Island, near-coastal Rhode Island, 

and coastal Rhode Island both before and after operation of the BIWF to understand changes in 

and determinants of support for the BIWF. Compared to those in the pre-installation period, 

levels of support in the post-operation period increased across all three strata, yet only among the 

coastal Rhode Island stratum were these changes in opinion found to be statistically significant. 

The authors also find that a respective 83% and 78% of Block Island and non-Block Island 

residents who saw the BIWF “[liked] the way the turbines looked”, and this factor most strongly 

determined current support for the BIWF. In sum, the impacts of OSWFs on coastal recreation 

and tourism remains ambiguous. A concrete understanding of these impacts is vital for managers 

and developers of U.S. offshore wind resources to accurately assess externalities of OSWF 

development. 
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3  Data and Methods 

 In this section, we discuss the study context and data in relation to the econometric 

modelling strategy, sample construction, and identifying assumptions. Section 3.1 provides a 

timeline of events that guides our definition of the treatment period. Section 3.2 gives an 

overview of the data. We specify the econometric models in Section 3.3. Construction of the 

sample is outlined in Section 3.4 and sample characteristics are described in Section 3.5. Finally, 

Section 3.6 discusses the assumptions behind the DD estimator and potential threats to 

identification.  

 

3.1  Timeline of Events 

  First established in 2004, Rhode Island’s Renewable Energy Standard (RES) requires 

that 38.5% of the state’s electricity come from renewable resources by the end of 2035. RES 

targets began in 2007, requiring electricity providers to source 3% of their retail sales from 

renewable resources, with incremental increases in target levels each year. To help meet the 

goals of the RES, in 2008 Rhode Island selected Deepwater Wind as the state’s preferred 

offshore wind developer and initiated the Ocean Spatial Area Management Plan (Ocean SAMP), 

a marine zoning plan that provides management recommendations for developing and protecting 

Rhode Island’s marine resources (Smythe and McCann 2018). Approved in 2011, the Ocean 

SAMP identified the waters off the southern coast of Block Island as having the highest wind 

speeds and lowest relative costs of development within RI state waters, and thus deemed this 

area viable for offshore renewable energy development. The Ocean SAMP designated this 13 

square-mile area, which extends east to southwest of Block Island, a Renewable Energy Zone 

(REZ) (Coastal Resources Managment Council 2010).  

 Following approval of the Ocean SAMP, Deepwater Wind surveyed the sea floor within 

the REZ to determine potential locations for the turbine foundations and the two underwater 

cables, one connecting Block Island to the BIWF and one connecting Block Island to mainland 

Rhode Island.11 Deepwater Wind opted to locate the turbine array within southeast portion of the 

                                                 
11 A fiber optic cable for high speed-internet access was included in the undersea cable connecting Block Island to 
mainland Rhode Island. Block Island renters having better internet connection due to the construction of the BIWF 
may lead to identification problems. However, our data cover the period when the necessary on-island infrastructure 
was not yet built, hence renters experienced no change in internet service quality due to the BIWF over the course of 
the study period. 
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REZ to minimize environmental impacts and costs (Deepwater Wind 2012). They submitted 

state and federal permit applications for the wind farm in 2012 and received the final permit 

needed to advance the project in September 2014. In March 2015, Deepwater Wind fully 

financed the BIWF project by securing more than $290 million in loans.  

Offshore construction of the BIWF project commenced in the summer of 2015. By the 

end of the 2015 offshore construction season, in early December, turbine foundations that 

protrude slightly from the water had been set in place. At this point, scheduled strategically to 

avoid overlap with the tourist season, onshore construction activities began and lasted through 

spring of 2016. The 2016 offshore construction season started in early August and ended soon 

after, on August 18, 2016, when Deepwater Wind installed the fifth and final 600-foot-tall, 6 

MW wind turbine. On December 12, 2016, after several weeks of testing, the BIWF began 

providing wind-generated electricity to mainland Rhode Island. Block Island was connected to 

the BIWF’s electrical grid in May of 2017, prior to which four diesel generators sourced the 

island’s electricity needs. Now, because Block Island relies primarily on the electricity generated 

from the BIWF, these diesel generators operate only occasionally, which reduces air and noise 

pollution on one part of the island. 

 Our identification strategy involves comparing pre- and post-treatment rental activities, 

thus it is necessary to define when the treatment period begins, which is a bit ambiguous. In our 

case, the most important determinant of treatment-induced rental market adjustments is public 

awareness of the BIWF, so that tourists can take the information into account when deciding 

where to visit. The natural candidates are the dates of completed construction and grid 

connection.12 We choose to define treatment as completed construction because that is when the 

turbines are visible, but the Appendix discusses results from models that use an alternative 

treatment date defined by grid connection. 

An additional event, unrelated to BIWF, is necessary to discuss. In March 2017, 

corporate representatives from AirBnb visited Block Island and Nantucket Island to increase the 

number of AirBnb listings in those locations. They were particularly focused on encouraging 

owners of existing boutique hotel and bed-and-breakfast properties to use the AirBnb platform. 

Their visit to Block Island seems to have had the intended effect because beginning in March 

                                                 
12 A simple Google Trends query for “Block Island Wind Farm” confirms these milestones as important, as the 
weeks including August 18, 2016 and December 12, 2016 are the two highest points of search interest. 
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2017, the data reveal an influx of new Block Island AirBnb properties,13 most of which are 

boutique hotels or bed-and-breakfasts. This event motivates some key modelling decisions, and 

we discuss its relevance in more detail in Section 3.4. 

 

3.2  Data 

AirBnb is an online hospitality service that provides people with short-term lodging 

options from hosts seeking to rent out their rooms or properties. We obtained AirBnb rental data 

from AirDNA, a company that collects publicly available information about individual properties 

from the AirBnb website. AirDNA currently tracks the performance of roughly four million 

AirBnb listings worldwide through an automated scraping procedure that occurs every three 

days. The data cover a 39-month period starting in October 2014, when AirDNA began 

collecting this information, to December 2017. Both daily and monthly data is provided, but we 

estimate our model using the monthly-aggregated data to ease interpretation of results.14 

The dataset contains two important types of information on each property: rental 

activities and property characteristics. Rental activities include nightly rates, monthly revenues, 

and whether nights are reserved, available but not reserved, or blocked by the host and thus 

unavailable for reservation. We use this information to generate our dependent variables. 

Property characteristics include city, number of bedrooms, number of bathrooms, minimum 

length of stay, maximum number of guests allowed, cleaning fee, extra people fee, security 

deposit, listing type (private room, entire place, etc.), and property type. There are a variety of 

property types included in the data and we aggregate them into four categories: bed-and-

breakfasts, apartments, guest suites, and houses. Approximate latitude and longitude coordinates 

are also included, and we use these variables to calculate Euclidean distance to the coast. In 

Figure A2 in the Online Appendix, we plot these approximate locations to ascertain the visibility 

of the BIWF from our sample of AirBnb properties. Also included in Figure A2 is a visibility 

map of the area surrounding Block Island, adapted from Griffin et al. (2015). The figure suggests 

that few Block Island properties are in direct viewshed of the wind farm.  

We estimate econometric models using five different dependent variables. These 

variables are measured at the monthly level and are defined as follows: (1) Available nights, 

                                                 
13 Figure A1 in the Appendix displays this graphically. 
14 We obtain qualitatively similar results when we estimate our model using the daily data. 
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which equals the sum of reserved and available nights, (2) Reservation nights, which equals the 

number of nights a property was booked, (3) Occupancy rate, which is equal to Reservation 

nights divided by Available nights, (4) Average booked rate, which equals the average price of 

booked nights, and (5) Revenue, which is equal to total monthly AirBnb revenue.15 Because 

owners determine directly the number of nights their property is available and its price, short-run 

changes in Available nights and Average booked rate might capture supply-side responses. 

Conversely, short-run changes in Reservation nights, Revenue, and Occupancy rate may be more 

representative of consumer demand. While these variables are of course related and determined 

by many of the same forces, our goal is to understand different margins of adjustment and get a 

broad picture of the whole story of how the vacation rental market responds to an environmental 

shock.  

Our method is rooted in hedonic valuation; however, our data are not the standard 

property sales typically used with this method. As a first step to build confidence in our data and 

as exploration of implicit prices in the vacation rental market, we estimate a basic, cross-

sectional hedonic regression with log(Average booked rate) on the left-hand side and property 

characteristics on the right-hand side. We use all observations occurring before construction of 

the BIWF.  

The estimated coefficients in Table 1 generally follow the direction of a priori 

expectations, and thus bolster our confidence that valuable signals can be recovered from the 

data. Properties with greater numbers of bedrooms or bathrooms command higher rental rates. 

Those within 0.1 miles of the coast come with a substantial, roughly 30% rental premium. A 

one-person increase in the maximum number of guests allowed to stay at a property increases 

average booked rates by about 5%. After controlling for other rental rate determinants, rental 

rates for houses and bed-and-breakfasts are not statistically different than rental rates for 

apartments; guest suites, however, are booked at 13% lower average price than apartments. 

Compared to Block Island properties, rental rates are more than 40% lower in Narragansett, RI 

and Westerly, RI, and about 19% higher in Nantucket, MA. Average booked rates are highest 

relative to January in July, August, and September.   

 

                                                 
15 Average booked rate and Revenue also include a per-visit cleaning fee, but additional fees charged for extra 
people are not visible on the AirBnb website and are therefore not included in the calculation of these variables. 
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3.3  Econometric Models 

We use a DD modeling strategy to examine the effect of the BIWF on the vacation rental 

market. We compare rental transactions in Block Island, the treated group, to other tourist 

destinations, the control group, before and after construction of the wind farm. Control locations 

are Narragansett, RI, Westerly, RI, and Nantucket, MA. These cities are comparable to Block 

Island in that they are highly desirable summer vacation and tourist destinations in Southern New 

England. Figure 1 shows a map of all four cities and the approximate location of the BIWF. 

Narragansett and Westerly are located on the southern coast of mainland Rhode Island, 

approximately 10 miles from Block Island.16 Nantucket is located approximately 20 miles off the 

coast of Cape Cod, Massachusetts and, like Block Island, offers a unique island experience to 

visitors. A standard DD equation applied to this context can be written as: 

𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖 = 𝛽𝛽1(𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝑐𝑐𝑃𝑃𝑐𝑐𝑃𝑃𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑃𝑃𝑐𝑐𝑃𝑃𝑐𝑐𝑖𝑖) + 𝛽𝛽2𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖 + 𝛽𝛽3𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝑐𝑐𝑃𝑃𝑐𝑐𝑃𝑃𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑃𝑃𝑐𝑐𝑃𝑃𝑐𝑐𝑖𝑖 + 𝑋𝑋′𝑖𝑖𝑖𝑖𝑖𝑖𝜃𝜃 + 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖, (1) 

where 𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖 is the outcome variable for property 𝑐𝑐 in city 𝑐𝑐 during year-month 𝑃𝑃, 𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖 is a dummy 

variable that equals one if a property is in Block Island, and 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝑐𝑐𝑃𝑃𝑐𝑐𝑃𝑃𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑃𝑃𝑐𝑐𝑃𝑃𝑐𝑐𝑖𝑖 is a dummy 

variable that equals one if an observation occurred during the post-construction period. Although 

construction of the BIWF was completed on August 18, 2016, we specify the post-construction 

period to begin on September 2016 because our data are aggregated to the monthly level.17 

Property characteristics are contained in 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖. Finally, 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖  is the error term. We cluster errors at 

the property level to allow correlation across time within individual properties. The difference in 

rental market outcomes between Block Island and control groups cities, and between the pre- and 

post-treatment period, are measured by 𝛽𝛽2 and 𝛽𝛽3, respectively. 𝛽𝛽1 is the coefficient of interest, 

and it measures the differential change in rental market outcomes from the pre-treatment period 

for Block Island properties relative to changes in rental market outcomes for properties in 

Narragansett, Westerly, and Nantucket. 

 Equation (1) is a standard DD model, but we chose to strengthen it with several sets of 

fixed-effects and other control variables. First, we include property fixed effects that purge from 

the error term any unobservable time-invariant factors, such as nearby amenities and online 

                                                 
16 The BIWF can be seen from a few locations on the southern portion of Narragansett. From these locations, 
however, the turbines appear as an extremely small cluster on the horizon and can be perceived only under certain 
weather and sky conditions.   
17 In the Online Appendix, we provide results from models that exclude August 2016 from the sample given this 
treatment status uncertainty. These results are very similar to our main results. 
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appeal, that both affect rental market outcomes and differ across individual properties. Second, 

we include year-month fixed effects that capture region-wide temporal variation in rental 

activity. Such variation is particularly large in this context because of the highly seasonal nature 

of the vacation rentals market. Third, we include city-specific time trends to control for rental 

market trends at the city level. These variables are critical for disentangling impacts of the BIWF 

from other potential location-specific growth trends. After including these variables, our new 

specification is 

𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖 = 𝛽𝛽1(𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝑐𝑐𝑃𝑃𝑐𝑐𝑃𝑃𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑃𝑃𝑐𝑐𝑃𝑃𝑐𝑐𝑖𝑖) + 𝑋𝑋′𝑖𝑖𝑖𝑖𝑖𝑖𝜃𝜃 +  𝛾𝛾𝑖𝑖 + 𝛼𝛼𝑖𝑖 + 𝛿𝛿𝑖𝑖𝑃𝑃 + 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖, (2) 

where terms are as described previously with the addition of 𝛼𝛼𝑖𝑖, the property fixed-effects, 𝛾𝛾𝑖𝑖, the 

year-month fixed effects, and 𝛿𝛿𝑖𝑖, which estimate the city-specific time trends. We find that 

models which include year-month fixed effects and city-specific time trends are, across the five 

dependent variables, broadly superior in terms model fit and Akaike Information Criteria (AIC) 

than those that omit one or both of sets of controls; Table A1 of the Online Appendix discusses 

the results of models that add these control variables sequentially.  

All time-invariant property characteristics, including property location, distance to the 

coast, and property type are excluded from estimation due to the inclusion of property fixed-

effects. Yet for a small portion of properties, listed amenities such as minimum length of stay, 

maximum number of guests, security deposit, cleaning fees, and fees for extra people do change 

over time, and hence we include them in 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖.18 If these time-varying property amenities are 

endogenous to treatment, however, their inclusion in model would violate the basic identification 

condition 𝐸𝐸[𝑋𝑋𝜀𝜀] = 0 and render OLS estimates inconsistent. This is a plausible source of 

endogeneity for our study, considering that landlords in Block Island or elsewhere may have, in 

response to the BIWF, sought out additional means to make their properties more attractive—by 

decreasing the minimum length of stay or extra-people fee, for example. To address this concern, 

we first examined properties in the main estimation sample (Table 2) and found that only a few 

properties in Nantucket or Narraganset—no Block Island properties—varied their amenities over 

time (Online Appendix Table A3). Next, we estimated DD models like those defined by 

Equations (3) and (4) below but specified the time-varying property amenities as the dependent 

                                                 
18 Models for Average booked rate and Revenue exclude cleaning fees from the vector of time-varying property 
amenities because these fees are incorporated in the dependent variable.  
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variable (Online Appendix Table A4). Although these models reveal negative and significant 

treatment effects for one of the five property amenity variables, these effects are driven by a few 

properties in Nantucket and the coefficient estimates are negligible in magnitude. Based on these 

findings, we take all time-varying property characteristic as exogenous to treatment.  

 The treatment effect in Equations (1) and (2) is an average across all months of the year. 

Because most rental market activity occurs during the tourist season,19 we hypothesize that 

treatment effects may be different during this period compared to other times of the year. Hence, 

we specify two models that differentiate treatment effects by time of year. In the first, we interact 

the treatment effect term 𝐵𝐵𝐵𝐵 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝑐𝑐𝑃𝑃𝑐𝑐𝑃𝑃𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑃𝑃𝑐𝑐𝑃𝑃𝑐𝑐 with indicator variables for summer and off-

summer, where summer is defined as the months of June, July, August, and September. The 

second model is similar, but further differentiates peak (July and August) and off-peak (June and 

September) summer. We choose to specify these models such that the full effect of treatment in 

each season is represented by a single coefficient on a triple interaction term. These two models 

are defined below. 

 

 𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖 = 𝛽𝛽1(𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝑐𝑐𝑃𝑃𝑐𝑐𝑃𝑃𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑃𝑃𝑐𝑐𝑃𝑃𝑐𝑐𝑖𝑖 × 𝑂𝑂𝑂𝑂𝑂𝑂_𝑃𝑃𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑖𝑖) 

         + 𝛽𝛽2(𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝑐𝑐𝑃𝑃𝑐𝑐𝑃𝑃𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑃𝑃𝑐𝑐𝑃𝑃𝑐𝑐𝑖𝑖 × 𝑆𝑆𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑖𝑖) 

         +𝛽𝛽3(𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖 × 𝑂𝑂𝑂𝑂𝑂𝑂_𝑃𝑃𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑖𝑖) +  𝛽𝛽4(𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖 × 𝑆𝑆𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑖𝑖)     

         + 𝑋𝑋′𝑖𝑖𝑖𝑖𝑖𝑖𝜃𝜃 + 𝛾𝛾𝑖𝑖 + 𝛼𝛼𝑖𝑖 + 𝛿𝛿𝑖𝑖𝑃𝑃 + 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖 (3) 

   

 𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖 = 𝛽𝛽1(𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖 × 𝑂𝑂𝑂𝑂𝑂𝑂_ 𝑃𝑃𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑖𝑖 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝑐𝑐𝑃𝑃𝑐𝑐𝑃𝑃𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑃𝑃𝑐𝑐𝑃𝑃𝑐𝑐𝑖𝑖)  

         + 𝛽𝛽2(𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖 × 𝐽𝐽𝑐𝑐𝐽𝐽𝑦𝑦_𝐴𝐴𝑐𝑐𝐴𝐴𝑖𝑖 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝑐𝑐𝑃𝑃𝑐𝑐𝑃𝑃𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑃𝑃𝑐𝑐𝑃𝑃𝑐𝑐𝑖𝑖)  

         + 𝛽𝛽3(𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖 × 𝐽𝐽𝑐𝑐𝑐𝑐𝑠𝑠_𝑆𝑆𝑠𝑠𝑆𝑆𝑖𝑖 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝑐𝑐𝑃𝑃𝑐𝑐𝑃𝑃𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑃𝑃𝑐𝑐𝑃𝑃𝑐𝑐𝑖𝑖)  

         +𝛽𝛽4(𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖 × 𝑂𝑂𝑂𝑂𝑂𝑂_ 𝑃𝑃𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑖𝑖) + 𝛽𝛽5(𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖 × 𝐽𝐽𝑐𝑐𝐽𝐽𝑦𝑦_𝐴𝐴𝑐𝑐𝐴𝐴𝑖𝑖)   

         + 𝛽𝛽6(𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖 × 𝐽𝐽𝑐𝑐𝑐𝑐𝑠𝑠_𝑆𝑆𝑠𝑠𝑆𝑆𝑖𝑖)+ 𝑋𝑋′𝑖𝑖𝑖𝑖𝑖𝑖𝜃𝜃 + 𝛾𝛾𝑖𝑖 + 𝛼𝛼𝑖𝑖 + 𝛿𝛿𝑖𝑖𝑃𝑃 + 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖 (4) 

 

3.4  Sample construction 

The full dataset comprises 1,368 AirBnb rental properties and $39.5 million in rental 

transaction revenue. Omitted from Equations (2), (3), and (4), however, are 630 properties that 

                                                 
19 To see this, Table A2 in the Online Appendix displays each month’s contribution to the total sample revenue and 
reservation nights that accrued over 2015, 2016, and 2017.  
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are active only during the post-treatment period and 120 properties that are active only during the 

pre-treatment period because for these properties, the within-property variation in pre- and post-

treatment rental market outcomes necessary to identify a treatment effect does not exist. We 

refrain from estimating Equations (2), (3), and (4) without property fixed-effects, which would 

retain these properties in the sample, because, as discussed in Section 3.1, corporate 

representatives from AirBnb seem to have successfully persuaded many existing Block Island 

bed-and-breakfast properties to begin using the Airbnb platform during the post-treatment 

period, and thus we are missing important pre-treatment information for these properties. We 

also examined the 630 properties active only during the post-treatment period and found 

significant differences in means between treatment groups for almost all housing characteristic 

variables, including a 45% higher proportion of bed-and-breakfast properties in Block Island. We 

would have additionally liked to examine the extensive margin by looking at new entrants into 

the market. However, given the coincidence of AirBnb’s corporate visit to the island, we cannot 

separate the impact of that event from new entrants due to the wind farm. Thus, we focus only on 

the intensive margin, and leave the extensive for future research in a different setting.  

We subsequently remove all bed-and-breakfasts from our sample because the outcome 

variables for these properties may be measured with error. We find an abundance of “blocked” 

property-nights, during both summer and off-summer months, in the rental histories of these 

properties. With near certainty, these properties can be rented year-round, so it is likely that some 

“blocked” nights indicate reservations arranged outside of the AirBnb platform.20 If this type of 

measurement error is correlated with any of the independent variables, OLS estimates will biased 

and inconsistent (Wooldridge 2013).21 After removing bed-and-breakfasts, we have 590 

properties in our sample.  

To improve comparability between treated and control group properties, we remove 

control group properties whose number of bathrooms, number of bedrooms, or minimum length 

of stay are outside the range of values observed for treated group properties. These excluded 

                                                 
20 Some of these properties in Block Island do use alternative rental platforms as confirmed by members of the 
Block Island Chamber of Commerce who have relationships with these property owners. 
21 The independent variable most likely to be correlated with the measurement error is the treatment group indicator, 
because these types of properties account for a substantially higher proportion of the remaining sample properties in 
Block Island (30%) than in other cities (6%). 
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properties have more than six bedrooms, more than five bathrooms, or require a minimum stay 

of more than seven nights. Our final sample consists of 558 AirBnb rental properties.  

 

3.5  Sample Characteristics 

Table 2 assesses the degree of similarity between properties in the treatment and control 

group by displaying pre-treatment means and differences in means between groups. Variables 

are taken as averages across all pre-treatment months in which a property had at least one 

available night or reservation night. Block Island properties have fewer available and reservation 

nights by about 2.5 nights per month than control properties. Pre-treatment period monthly 

revenue is also lower in Block Island by about $1,000 per month, which is intuitive given the 

differences in monthly reservation nights and the mean of average booked rates for Block Island 

properties ($559). Pre-treatment occupancy rates and average booked rates are not statistically 

different between treated and control groups.  

The housing characteristic control variables are well-balanced between groups. The 

average Block Island property has three bedrooms and two bathrooms, and requires a minimum 

stay of 3.6 nights, a roughly $500 security deposit, and $15 for each person above the maximum 

number of guests allowed. Twenty percent of properties in each treatment group are located 

within 0.1 miles of the coast. Each treatment group contains mostly houses, but apartments 

constitute a higher, though statistically insignificant, proportion of the sample in Block Island 

than in Narragansett, Westerly, and Nantucket.  

 

3.6  Assumptions 

While the results in Table 2 suggest that treated properties have common support along 

the spectrum of control group properties, the DD estimator relies on two untestable, identifying 

assumptions. First, we must assume that in the absence of treatment, differences in outcomes 

between treatment groups would remain constant over time. Support for this “common trends” 

assumption can be found by visually inspecting outcome trends during the pre-treatment period. 

Because the properties included in the sample change over time, instead of graphing raw 

outcome means, we estimate a version of Equation (2) that excludes the interaction term 𝐵𝐵𝐵𝐵 ×

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝑐𝑐𝑃𝑃𝑐𝑐𝑃𝑃𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑃𝑃𝑐𝑐𝑃𝑃𝑐𝑐, recover the residuals, and calculate differences in residuals between 
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treatment and control.22 Figure 2 plots these estimated differences with 95% confidence 

intervals.  

Figure 2 reveals that treated and control groups have similar trends in Reservation nights, 

Occupancy rate, Average booked rate, and Revenue during the pre-treatment period.23 For these 

outcome variables, we find relatively large but statistically insignificant differences in some pre-

treatment period months, but these differences likely reflect the small sample size of the treated 

group. Figure 2 also shows that differences in residuals for Reservation nights, Occupancy rate, 

Average booked, and Revenue are largest—and statistically significant for all but the latter 

outcome—during the post-treatment period, which is unobserved in these models. Our DD 

model specification serves to identify the portion of this unobserved variation attributable to the 

BIWF. The one concerning result in Figure 2 is the large and statistically significant deviation in 

Available nights residuals that immediately precedes treatment. One possible explanation is that 

the construction phase of the BIWF rendered Block Island a less attractive tourist destination, 

prompting landlords in Block Island to reduce monthly availability. However, this seems 

unlikely because we see reductions in Available nights during the summer of 2015, when 

offshore construction began, for both groups (Online Appendix Figure A3). Alternatively, Block 

Island landlords may use other rental platforms as their primary means of renting out rooms 

during the summer, resulting in a fewer number of available nights during the summer than at 

other times of the year. This explanation is equally questionable because we observe Block 

Island-specific reductions in available nights during the summers of 2015 and 2016, but not in 

the summer of 2017 (Online Appendix Figure A3). Nonetheless, the treated group’s decrease in 

monthly availability during the months preceding treatment will result in DD estimators that 

overstate the effect of the BIWF on Available nights. 

The second major assumption necessary for casual inference in DD models is the stable 

unit treatment value assumption (SUTVA), which requires that treatment does not affect the 

outcome of the control group (Rubin 1980). In the context of our study, this means we assume 

that the BIWF had no impact on rental activities in Nantucket, Narragansett, or Westerly. 

                                                 
22 For completeness, Figure A3 in the Appendix displays graphs of raw outcome means between treated and control 
groups.  
23 For the Average booked rate plot, missing values of differences in residuals reflect months in which no Block 
Island properties transacted; missing confidence intervals reflect months in which only one Block Island property 
transacted.    
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However, there are two plausible scenarios that would lead to a SUTVA violation. First, tourists 

may view the control locations as substitutes for Block Island. If they are attracted to the BIWF, 

then they may vacation on Block Island instead of their normal destination of Nantucket. Or, if 

they are repulsed by the BIWF, they may do the opposite. This substitution behavior would lead 

to exaggerated treatment effect estimates. A second possibility is that the BIWF is an attractive 

force even in control group cities. This is a concern particularly for Narragansett, as this is one of 

the main ports for ferries to Block Island. Tourists may be more likely to visit Narragansett 

knowing they can take a day-trip to Block Island to see the turbines. This SUTVA violation 

would lead to an underestimate of positive treatment effects. Given that we estimate positive 

treatment effects, the possible SUTVA violations have opposing effects, which renders any 

resulting bias ambiguous. While we cannot verify the SUTVA assumption holds, when we 

estimate models that omit Nantucket or Narragansett, the estimates change in the opposite way 

as would be expected if the hypothesized SUTVA violations were true. Thus, we proceed 

cautiously that the SUTVA holds. 

 

4  Results 

Table 3 presents our main results. Panel A reports estimates from Equation (3), and Panel 

B and Panel C come from Equation (4). All models include property fixed effects, property 

amenity variables that change over time, year-month fixed effects, and city-specific time 

trends.24  

We first discuss the results in Panel A. We find positive and significant summer and off-

summer treatment effects on Available nights, and the range of point estimates imply an increase 

of between 2.7 and 6 available nights per month for Block Island properties in response to the 

BIWF. However, these results are likely overestimates of the true effect of treatment on 

Available nights given the pre-treatment parallel trend issues discussed in Section 3.6. The 

summer treatment effect on Reservation nights is positive and statistically significant, and its 

coefficient indicates a 4.3-night increase in the number of reservations for the average Block 

Island property in each month from June through September. The coefficient representing the 

off-summer treatment effect on Occupancy rate is significant at the 10% level of confidence, 

indicating a seven percentage point decrease in occupancy rates for treated properties during off-

                                                 
24 Results from estimating Equation 2 are displayed in Table A1 in the Online Appendix.   



21 
 

summer months. In contrast, the summer treatment effect on Occupancy rate is positive but 

statistically insignificant. Estimated summer and off-summer treatment effects on Average 

booked rate are positive but insignificant, each with large standards errors.25 Finally, Panel A 

shows a significant summer treatment effect on Revenue. The magnitude of this coefficient 

implies that construction of the BIWF induced monthly revenue gains of $1,721 for Block Island 

properties relative to control group properties during the following summer months of June, July, 

August, and September.  

Panel B of Table 3 presents a similar story, but indicates that all treatment effects are 

occurring in the peak tourism months of July and August. For Available nights, the treatment 

effect is 7.416 for July and August, but just 2.519 for June and September. In the Reservation 

nights and Revenue models, we observe a similar pattern, but the treatment effects grow 

substantially in magnitude for July and August relative to Panel A. The magnitude of these 

coefficients implies that construction of the BIWF caused a seven-night increase in the number 

of nights booked and a $3,490 increase in AirBnb revenue in each of July and August for Block 

Island properties relative to control group properties. These effects are considerable, as the 

seven-night treatment effect on Reservation nights represents a roughly 125% increase relative to 

the average number of Reservation nights among Block Island properties during pre-treatment 

months of July and August. This result is somewhat comparable to Parsons and Firestone 

(2018)’s findings that curiosity trips to a first OSWF project at larger beaches (five million 

visitors per year) along the U.S. east coast could lead to a 40% annual increase in beach trips, 

and that at smaller beaches (half a million visitors per year), the potential market for curiosity 

trips could lead to a 400% increases in annual beach trips.  

Panel B also lends evidence to support demand increasing rather than supply-side 

adjustments. By disentangling the effect of treatment during the peak-tourism months of July and 

August from its average effect across all four summer months, the differential increase in 

Available nights over Reservation nights becomes smaller. As a result, and in contrast to Panel 

A, the coefficient representing the treatment effect on Occupancy rate during July and August in 

Panel B is positive and highly significant, indicating a 19 percentage point increase in occupancy 

                                                 
25 The large standard errors likely reflect the smaller sample size used in these models - we exclude property-month 
observations with zero rental transactions. Further, there is limited residual variation in prices remaining after 
controlling for property-specific factors, as shown in Table A1 in the Online Appendix. 
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rates during these months for Block Island properties, relative to the control group properties. In 

other months of the year, the effect of treatment on Occupancy rate is statistically insignificant. 

This finding implies that, during the peak-tourism months of July and August following 

construction, the BIWF yielded a disproportionately higher effect on Reservation nights than on 

Available nights, which suggests that treatment-induced changes in Reservation nights are not 

driven purely by treatment-induced changes in Available nights. In other words, this finding is 

evidence that our results are driven by changes in consumer demand, as measured by changes in 

Reservation nights, as opposed to supply-side responses that are reflected by changes in 

Available nights.  

 Because the data generating process may differ between summer and off-summer 

months, the models in Panel C use a sample that is restricted to observations occurring from June 

through September. This sample captures almost 75% of sample Revenue and Reservation nights 

in Panel B. Except for those pertaining to Available nights, estimated peak-summer treatment 

effects in Panel C are attenuated compared to those Panel B, but results are broadly consistent 

between the two panels. Panel C reveals lower but comparable peak-summer treatment effects on 

Reservation nights and Revenue, which is further evidence that the effect of treatment is largely 

confined to the peak summer months of July and August. Like in Panels A and B, we see 

estimate no significant change in prices, which bolsters the idea that landlords set prices and 

stick to them while experiencing changes to other margins of the vacation rental market.  

In sum, we broadly see increases in rental activity during July and August and no change 

in other months. This could indicate that rental activity in the months of September through June 

is unresponsive to the BIWF; however, it is more likely a byproduct of the sparsity of rental 

activity during these months relative to July and August. Each panel of Table 3 yields similar 

results, yet treatment effects on Reservation nights, Occupancy rate, and Revenue, are most 

precisely estimated when differentiated between peak-summer (July and August), off-peak 

summer (June and September), and off-summer (October through May) months. Our preferred 

set of results are therefore those in Panel B. 

As stated before, the focus of this paper is tourism and not impacts to permanent 

residents, and one reason for this is the ambiguity of our results applied to permanent residents. 

The positive treatment effects on Revenue could imply welfare gains. However, landlords may 

view the BIWF as a disamenity and decide to stay in their property less often and increase its 
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availability on the rental market. If this leads to welfare losses that outweigh concurrent AirBnb 

revenue gains, the net effect on landowners would be negative. While this behavior is plausible, 

results in Figure 2 lend credence to the idea that construction of the BIWF had little effect on 

rental market participation. The figure shows that only in the model for Available nights do 

differences in residuals between treated and control group cities remain relatively constant 

during the post-construction period. We view this as additional evidence that our results driven 

primarily by changes in consumer demand. 

 

4.1  Heterogeneity of impacts by property characteristics 

If rental sorting behavior occurs across different segments of the population, there may be 

heterogeneity in the effect of the BIWF that depends on property characteristics. In Table 4, we 

investigate heterogeneity in the effect of treatment across two property characteristics: 

𝐵𝐵𝑠𝑠𝐵𝐵𝑐𝑐𝑃𝑃𝑃𝑃𝑠𝑠𝑃𝑃, which is the mean-centered number of bedrooms, and 𝐶𝐶𝑃𝑃𝐶𝐶𝑃𝑃𝑃𝑃, which is a dummy 

variable that equals one if a property is within 0.1 miles of the coast. Note that we examine 

heterogeneity with respect to 𝐶𝐶𝑃𝑃𝐶𝐶𝑃𝑃𝑃𝑃 not to illuminate the differential effects of treatment with 

respect to turbine visibility, as we cannot ascertain this factor from the data, but rather to discern 

whether different segments of the vacation rental market are more strongly affected by treatment 

than others. Specifically, properties located within 0.1 miles of the coast are, on average across 

all four cities, 27% more expensive than properties located further inland (Table 1), hence these 

properties are likely to accommodate a different segment of the renter population.  

Each column of Table 4 shows results from two models. The models are specified by 

Equation (4), but they also include all two- and three-way interactions between the property 

amenity variable of interest, 𝐵𝐵𝐵𝐵, 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝑐𝑐𝑃𝑃𝑐𝑐𝑃𝑃𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑃𝑃𝑐𝑐𝑃𝑃𝑐𝑐, and the seasonal indicator variables that 

are necessary to identify differential effects of treatment by season and property characteristic. 

These differential effects are measured by coefficients on the four-way interactions terms 

displayed in the table. Because estimated 𝑂𝑂𝑂𝑂𝑂𝑂_𝑃𝑃𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐 and 𝐽𝐽𝑐𝑐𝑐𝑐𝑠𝑠_𝑆𝑆𝑠𝑠𝑆𝑆 treatment effects have 

been largely insignificant, Table 4 displays the estimated coefficient on the main and interacted 

𝐽𝐽𝑐𝑐𝐽𝐽𝑦𝑦_𝐴𝐴𝑐𝑐𝐴𝐴 treatment effect only. Other variables are not displayed in Table 4 for ease of 

exposition. We also report under each set of estimates the linear combination of the two 

coefficients displayed. These estimates indicate the effect of treatment for properties with one 

bedroom above the mean or properties on the coast.  
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 Overall, we see little evidence of heterogeneity across property characteristics, but with a 

couple suggestive findings. Differential treatment effects on Available nights, Reservation 

nights, Occupancy rate, and Average booked rate are statistically insignificant for each property 

amenity variable. However, models that disentangle treatment effects on Reservation nights, 

Occupancy rate, and Revenue between properties with and above the sample average number of 

bedrooms yield an interesting result: for each outcome variable, the coefficients on (𝐵𝐵𝐵𝐵 ×

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝑐𝑐𝑃𝑃𝑐𝑐𝑃𝑃𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑃𝑃𝑐𝑐𝑃𝑃𝑐𝑐 × 𝐽𝐽𝑐𝑐𝐽𝐽𝑦𝑦_𝐴𝐴𝑐𝑐𝐴𝐴 × 𝐵𝐵𝑠𝑠𝐵𝐵𝑐𝑐𝑃𝑃𝑃𝑃𝑠𝑠𝑃𝑃) is positive and the total effect of treatment on 

properties having one more bedroom than the sample average is significant at the 5% level or 

higher. These results imply that properties able to accommodate larger parties are more strongly 

affected by treatment than those able to accommodate smaller parties. They may also be an 

indication that treatment-induced changes in rental market outcomes are not driven purely by 

“curiosity trips” to the wind farm, which we would expect to be composed of smaller parties. 

 The coefficient on (𝐵𝐵𝐵𝐵 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝑐𝑐𝑃𝑃𝑐𝑐𝑃𝑃𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑃𝑃𝑐𝑐𝑃𝑃𝑐𝑐 × 𝐽𝐽𝑐𝑐𝐽𝐽𝑦𝑦_𝐴𝐴𝑐𝑐𝐴𝐴 × 𝐶𝐶𝑃𝑃𝐶𝐶𝑃𝑃𝑃𝑃) in the model for 

Revenue implies a significant, $6,381 difference in the effect of treatment between properties 

located within and those located further than 0.1 miles from the coast. Additionally, the effect of 

treatment on Reservation nights, Occupancy rate, and Revenue for properties located within 0.1 

miles from the coast properties is significant and considerably larger in magnitude than its effect 

on properties located further inland. Given these findings and that coastal proximity comes with 

a substantial rental premium, it is possible that the positive treatment impacts estimated by our 

preferred specification are driven largely by behavioral changes occurring among the high-

income segment of the vacation renter population.  

 

5  Conclusion 

In this study we evaluate the impact of the BIWF on tourism as measured by changes in 

local AirBnb rental market activity. Within a hedonic valuation framework, we estimate a series 

of DD models using scraped AirBnb data. To uncover the full story of how the BIWF impacted 

the local rental market, we estimate each model using multiple dependent variables, each of 

which derives from a confluence of supply- and demand-side adjustments.  

We find that the installation of the BIWF acted not as a tourist deterrent, but as tourist 

attractant. Results from our preferred specifications indicate that during each peak-tourism 

month of July and August following its construction, the BIWF caused a seven-night increase in 
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the number of nights reserved, a nineteen percentage point increase in occupancy rates, and a 

$3,490 increase in revenue for AirBnb properties in Block Island relative to properties in control 

group cities.  

While there are no other similar studies with which we can compare results, our findings 

align with several indications of public interest in the BIWF that are outside of the vacation 

rental market. The Block Island Ferry, local for-hire fishing boats, and helicopter charters have 

all capitalized on the BIWF by adding new tours around the wind farm. Because its underwater 

structures act as fish aggregators, the BIWF has created new fishing opportunities (ten Brink and 

Dalton 2018) and thus drawn praise from the recreational fishing community (Monti 2018, 

2017). One for-hire fishing boat owner was pleasantly surprised about the impacts of the BIWF, 

saying that “the business level picked up more than [expected]” and that it “continues to grow” 

(Maritime Executive 2018). Representatives from other sectors of the tourism industry in Block 

Island expressed similar sentiments about the BIWF during recent focus group interviews (Smith 

et al. 2018). Another potential indicator of public interest is that information about the BIWF is 

emphasized on the Block Island Times website. Thus, taken within the broader context, our 

results are plausible reflections of wider interest in and economic gains from the BIWF.  

Another factor that may be driving our results is the “warm glow” effect of OSWF 

development. Evidenced in a few recent studies, this effect is unrelated to the visibility or 

ecological impacts of OSWFs; rather, it derives from the positive feelings some may experience 

when supporting a renewable energy source. Parsons and Firestone (2018) find that the rationale 

behind 52% of respondents who indicated that a wind farm would improve their beach 

experience was knowing something good was being done for the environment; only 11% of these 

respondents cited as their rationale the aesthetic appeal of the turbines in the horizon. 

Additionally, the authors find little variation in the percentage of respondents who would switch 

from their current beach to an alternative one with an OSWF with respect to the distance of the 

OSFW from the beach, which is also consistent with the “warm glow” effect. Firestone et al. 

(2018) provide additional evidence of the “warm glow” effect after studying determinants of 

support for the BIWF, noting that “the description of the [Block Island] wind turbines that 

resonated most universally among both Block Island and coastal Rhode Island supporters [who 

had seen the turbines] was ‘symbolic of progress towards clean energy’”. Hence, it could be that 
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our results are driven partly by increased visitation from individuals who like the feeling of 

supporting a clean energy source, but might not necessarily care about seeing the BIWF. 

 Our study is novel and a strong application of revealed preference data, however several 

limitations exist. Because the AirBnb rental property data used to proxy for tourism represents 

one segment of the tourist population, we are unable to capture behavioral responses from other 

important segments, like single-day visitors and those who book short-term lodging 

accommodations through other rental platforms. Research using more comprehensive data is 

needed to explore whether preferences for the BIWF revealed in this study are representative of 

the tourist population at large. The data is also confined to a relatively short, roughly one-year 

post-construction time horizon. Updating our analysis using additional years of data would allow 

us to ascertain whether BIWF-related tourism impacts are transient or persistent.  

The overarching objective of this research is to understand the effects of offshore wind 

energy development on tourism. However, because we focus on the BIWF, there are several 

factors that limit the external validity of our results, in the sense that our estimates may not apply 

to future OSWFs. First, our estimates come from the United States’ very first OSWF, which may 

elicit more excitement or interest than subsequent developments. Second, future OSWFs in the 

U.S. will differ from the BIWF in terms of the number of turbines, installed capacity, proximity 

to and visibility from the shoreline and beach, and the physical and socioeconomic 

characteristics of the surrounding community. Thus, we urge caution when trying to generalize 

our results to future OSWFs. However, our results provide an important data point to the 

ongoing debate surrounding tourism impacts of OSWFs and provide a baseline for future work.  
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Table 1. Determinants of nightly booked rates: OLS estimation results. 

 
Dependent Variable: 

log(Average booked rate) 
Variable Coefficient  Standard 

 Bedrooms 0.101***  (0.039) 
Bathrooms 0.126***  (0.035) 
Within 0.1 miles of coast (1=yes) 0.274***  (0.059) 
Minimum stay 0.007  (0.006) 
Maximum number of guests allowed 0.049***  (0.017) 
Security deposit ($100’s) 0.024***  (0.007) 
Extra people fee ($100’s) 0.040  (0.041) 
House 0.018  (0.059) 
Bed and breakfast 0.057  (0.072) 
Guest suite -0.131*  (0.075) 
Nantucket 0.188**  (0.091) 
Narragansett -0.436***  (0.084) 
Westerly -0.480***  (0.106) 
February -0.017  (0.094) 
March -0.134  (0.089) 
April 0.131  (0.081) 
May 0.309***  (0.081) 
June  0.287***  (0.082) 
July 0.408***  (0.082) 
August 0.406***  (0.082) 
September 0.444***  (0.090) 
October 0.300***  (0.094) 
November 0.256**  (0.101) 
December 0.312***  (0.082) 
2015 0.108  (0.070) 
2016 0.254***  (0.084) 
Observations         2,188   
R-squared 0.701   
Notes: Sample contains property-months with at least one reservation night and 
is restricted to observations occurring prior to September 2016. Standard errors 
are clustered at the property level. *,**, and *** represent significance at the 
10%, 5%, and 1% level of significance, respectively. 
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Table 2. Summary statistics of property characteristics. 
 Pre-treatment means (standard deviations)  Difference in means 

Variable Block Island  Control cities   
Available nights 21.19  23.72  -2.53** 

 (7.61)  (6.18)  (1.18) 

Reservation nights 2.85  5.40  -2.55*** 

 (2.54)  (5.22)  (0.96) 

Occupancy rate 0.18  0.23  -0.05 

 (0.19)  (0.21)  (0.04) 

Revenue ($) 1495.83  2506.39  -1010.56* 

 (1452.91)  (3198.00)  (587.68) 

Average booked rate ($) 559.18  554.97  4.20 

 (304.65)  (469.85)  (97.04) 

Bedrooms 2.93  2.85  0.08 

 (1.28)  (1.47)  (0.27) 

Bathrooms 1.95  2.03  -0.08 

 (1.06)  (1.09)  (0.20) 

Within 0.1 miles of coast (1=yes) 0.20  0.20  -0.00 

 (0.41)  (0.40)  (0.08) 

Minimum stay (number of nights) 3.63  3.63  0.00 

 (2.06)  (2.11)  (0.40) 

Maximum number of guests allowed 6.63  6.20  0.44 

 (2.24)  (3.11)  (0.58) 

Security deposit ($) 493.33  422.04  71.29 

 (365.24)  (521.72)  (96.61) 

Extra people fee ($) 13.67  12.79  0.87 

 (31.43)  (34.96)  (6.53) 

House (1=yes) 0.80  0.87  -0.07 

 (0.41)  (0.33)  (0.06) 

Apartment (1=yes) 0.20  0.11  0.09 

 (0.41)  (0.32)  (0.06) 
Observations 30  528  558 
Notes: Property characteristic variables are taken as average values across all pre-treatment months in which a property 
had one or more available or reservation night. For the variable Average booked rate, the number of observations across 
columns is 24, 447, and 471 due to some properties having zero rental transactions during the pre-treatment period. 
Standard errors below in parenthesis in the difference in means column. *,**, and *** represent significance at the 
10%, 5%, and 1% level of significance, respectively. 
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Table 3. The effect of BIWF on the vacation rental market. 
Panel A: Summer and off-summer treatment effects 

 Available nights Reservation nights Occupancy rate Average booked rate Revenue 
   BI×Post_construction×Off_summer 2.675* -0.164 -0.069* 47.960 -55.881 
 (1.494) (0.809) (0.039) (34.959) (436.147) 
   BI×Post_contsruction×Summer 6.010*** 4.312*** 0.083 7.787 1721.120** 
 (1.621) (1.264) (0.052) (47.337) (869.615) 
   Observations 10,019 10,019 10,019 4,385 10,019 
   R-squared 0.254 0.481 0.512 0.930 0.412 
      
Panel B: Off-summer, peak-summer, and off-peak summer treatment effects 
 Available nights Reservation nights Occupancy rate Average booked rate Revenue 
   BI×Post_construction×Off_summer 2.065 -0.266 -0.055 32.351 -32.868 
 (1.582) (0.791) (0.037) (30.877) (378.234) 
   BI×Post_construction×July_Aug 7.416*** 7.081*** 0.188*** -18.750 3489.919** 
 (2.280) (1.837) (0.071) (55.573) (1451.393) 
   BI×Post_construction×June_Sep 2.519 1.248 0.028 -5.771 75.870 
 (1.766) (1.263) (0.052) (36.469) (798.076) 
   Observations 10,019 10,019 10,019 4,385 10,019 
   R-squared 0.255 0.482 0.512 0.930 0.413 
      
Panel C: Restricted sample, June through September 
 Available nights Reservation nights Occupancy rate Average booked rate Revenue 
   BI×Post_construction×July_Aug 8.935*** 6.010*** 0.131 -10.265 3398.752** 
 (3.001) (2.119) (0.085) (70.513) (1687.622) 
   BI×Post_construction×June_Sep 4.339* -0.556 -0.068 -13.724 -550.277 
 (2.262) (1.763) (0.075) (36.679) (989.486) 
   Observations 3,923 3,923 3,923 2,649 3,923 
   R-squared 0.358 0.505 0.542 0.946 0.490 
Notes: ‘BI’ stand for Block Island, ‘Post_construction’ is an indictor variable for the post-construction (treatment) period, ‘Summer’ is an indicator variable for the months 
of June, July, August, and September, ‘Off_summer’ is an indicator variable for the months of October through May, ‘July_Aug’ is an indicator variable for the months of 
July and August, and ‘June_Sep’ is an indicator variable for the months of June and September. Included in all regressions as controls are minimum stay (number of nights), 
maximum number of guests, security deposit ($), extra people fee ($), and cleaning fee ($); however, regressions for Average booked rate and Revenue exclude cleaning 
fees, as these fees are incorporated in the outcome variable. All regressions include property fixed-effects, year-month fixed effects, city time trends, and a constant term. 
Standard errors are shown below in parenthesis and clustered at the property level.  *,**, and *** represent significance at the 10%, 5%, and 1% level of significance, 
respectively. 
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Table 4. Heterogeneity of BIWF treatment effects by property characteristic.  

Variable Available nights Reservation nights Occupancy rate Average booked rate Revenue 

   β1(BI×Post_construction×July_Aug) 5.025** 6.943*** 0.213*** -64.411 2600.966** 
 (2.094) (2.130) (0.076) (45.133) (1191.415) 
   β2(BI×Post_construction×July_Aug×Bedrooms) 0.950 0.666 0.057 39.547 1397.293 
 (1.606) (1.331) (0.052) (55.504) (1407.110) 

   β1 + β2 5.975*** 7.609*** 0.270*** -24.863 3998.258** 
 (2.273) (1.863) (0.069) (81.244) (1869.507) 

   β1(BI×Post_construction×July_Aug) 5.959*** 6.898*** 0.199*** -44.627 3102.638* 
 (2.172) (2.126) (0.076) (56.675) (1640.852) 
   β2(BI×Post_construction×July_Aug×Coast) -3.290 4.213 0.382 -7.015 6381.021** 
 (4.371) (4.785) (0.301) (86.818) (2736.047) 

   β1 + β2 2.668 11.110*** 0.581** -51.642 9483.660*** 
 (3.795) (4.327) (0.292) (69.043) (2200.988) 
Notes: Estimated interaction coefficients from two separate regressions, delineated by horizontal lines, are shown in each column. Estimated coefficients on 
other variables are not displayed, but a full table of results is available upon request. ‘BI’ stand for Block Island, ‘Post_construction’ is an indictor variable for 
the post-construction (treatment) period, ‘July_Aug’ is an indicator variable for the months of July and August, ‘Bedrooms’ is the mean-centered number of 
bedrooms, and ‘Coast’ is a dummy variable that equals one if a property is within 0.1 miles of the coast and zero otherwise. Numbers of observations across 
columns are listed in Panel B of Table 4. Included in all regressions as controls are minimum stay (number of nights), maximum number of guests, security 
deposit ($), extra people fee ($), and cleaning fee ($); however, regressions for Average booked rate and Revenue exclude cleaning fees, as these fees are 
incorporated in the outcome variable. All regressions include property fixed-effects, year-month fixed effects, city time trends, and a constant term. Standard 
errors are shown below in parenthesis and clustered at the property level. *,**, and *** represent significance at the 10%, 5%, and 1% level of significance, 
respectively. 
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Figure 1. Geographic location of treated and control locations and the BIWF turbines. 
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Figure 2. Pre-treatment trends in dependent variables. 

 
Notes: A version of Equation (2) that excludes the interaction term 𝐵𝐵𝐵𝐵 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝑐𝑐𝑃𝑃𝑐𝑐𝑃𝑃𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑃𝑃𝑐𝑐𝑃𝑃𝑐𝑐 is estimated 
for each dependent variable and residuals are calculated. Figures plot differences in residuals between 
treatment and control by month. 95% confidence intervals plotted in gray. Vertical red lines indicate the 
onset of the treatment period. 

 

 


